
A CMOS-Memristive Self-Learning Neural Network

for Pattern Classification Applications

Melika Payvand, Justin Rofeh, Avantika Sodhi, Luke Theogarajan

University of California Santa Barbara

Santa Barbara, CA, U.S.A

ltheogar@ece.ucsb.edu

Abstract— Memristors have proven to be powerful

analogs of neural synapses. While there have been some

efforts to exploit this feature, the intrinsic analog nature of

the memristive element has not been fully utilized. This

paper presents a hardware-efficient neuromorphic CMOS-

memristor pattern classifier. The system takes advantage

of the memristor as a true analog memory, and Spike

Timing Dependent Plasticity (STDP) is utilized to program

memristors in a recurrent neural network. System co-

simulations are performed in Verilog-AMS with CMOS

devices and previously published memristive models. The

results indicate the power of this approach in pattern

classification using unsupervised learning.

Keywords— Neural networks; Unsupervised learning;

Adaptive learning; VLSI learning circuits; Spike Timing

Dependent Plasticity (STDP); Memristors

I. INTRODUCTION

Realizing a computational framework rivaling the scale and

complexity of biological neural networks is extremely

challenging. This stems from the enormous connectivity in the

brain utilized for massive parallel processing, which is further

exacerbated with the need for a nonvolatile memory or

synthetic synapse. Advances in nonvolatile storage such as

Flash memories, though exciting, are extremely hard to co-

integrate in a dense fashion with CMOS. Recently, memristors

have emerged as a dense nonvolatile memory [1], capable of

being directly integrated with CMOS in a hybrid fashion [2,3].

Lately, several attempts have been made to synthesize

neuromorphic computational platforms utilizing memristors

and CMOS circuits [5]-[11]. However, they either need

synchronization which is not a biologically plausible

mechanism [4,5], require a global and/or local teacher [6], are

computationally expensive [4-6, 9] or depend on absolute

spike shape leading to variable learning rates [10-11].

Moreover, most of these examples primarily utilize the digital

design framework, which does not exploit the memristor’s

potential as a true analog memory with a continuum of

programming levels. Furthermore, none of these examples

have used memristors in neural networks for pattern

recognition or clustering applications.

We present here a hardware-efficient neuromorphic platform

utilizing principles borrowed from computational

neuroscience and biology. The principal idea is the efficient

implementation of spike-based learning algorithm utilizing a

biomimetic circuit approach. Using this principle we have

realized simple pattern recognition architectures.

The paper is organized as follows: In section II, we present a

brief background on the learning algorithm and the memristor

model used in this work. Section III describes the proposed

architecture for the spike-based unsupervised neural network.

Details of the circuit-level implementation are discussed in

section IV with the simulation results provided in section V.

Finally, concluding remarks about the potential of such a

platform is provided in section VI.

II. BACKGROUND

A. Unsupervised Learning

In unsupervised neural networks the clustering or

classification takes place based on the input patterns given to

the network. As shown in Fig. 1, each output neuron

represents a cluster. Therefore, the weight vector () is

the center of cluster A(B). When a new input is presented to

the network, an output neuron (or compute node) emerges as a

winner due to the random initial state of the weights in the

network. The most active output neuron will be the one whose

weight vector is the closest to the input vector, ui. The learning

algorithm minimizes the distance between the winning

neuron’s weight vector and the input pattern. Over the course

of many patterns, features get mapped into the weight vectors.

In other words weights are the running average of the input

patterns:

 () (∑)

 (∑)

 ()

 ()

(())

 () (1)

Where is the learning rate [12].

Fig. 1. Competitive Learning- Each output neuron represents a cluster.

 and represent cluster A and B respectively and and are

the centers of the clusters. Upon the arrival of every input pattern, the

winner neuron’s weights adjust in a way to get closer to the input pattern.

u1 and u2 are the firing rates of input neurons U1 and U2. Adapted from

[12].

B. Spike Timing Dependent Pasticity

Spike Timing Dependent Plasticity (STDP) is a biological

learning mechanism found to exist in the brain [Bi and Poo,

2001]. The synaptic strength changes as a result of relative

timing of spikes between the pre- and postsynaptic neurons.

The weights undergo Long Term Potentiation (LTP) and

strengthen if the pre- and postsynaptic neurons both depolarize

and fire simultaneously. Conversely, the connection between

neurons weaken when there is uncorrelated firing between the

postsynaptic and presynaptic neuron, termed Long Term

Depression (LTD).

Previous works have demonstrated memristors as a good

candidate for mimicking this learning mechanism (STDP) in

the brain. [14]

Our approach utilizes the mathematical modeling of STDP

from computational neuroscience coupled with the structural

biological framework of integrate and fire neurons and

memristive synapses to design an adaptive neural network.

C. Memristor Model

The memristor model used in this work is based on the Linear

Ion Drift (LID) model proposed by Strukov et al. [1].

Simulation modeling of memristive behavior was performed

using Verilog-AMS code modified from the simulation model

(LID option) presented by Kvatinsky et al. [15].

This model assumes two resistors in series: and .

and represent the doped and un-doped regions of the

active area of the device. Fig. 2 shows the simplified

memristor model and the inset represents the memristor’s

symbol. The state variable w is bounded between 0 and D (the

length of the active region) and moves between the doped and

un-doped region under the application of the electric field and

changes the resistance of the device.

The so-called memristance of the device follows equation 2:

 ()

 (

) (2)

Fig. 2. Linear Ion Drift model of the memristors proposed in [1].

Fig. 3. Memristor I-V characteristics modeled in Verilog AMS and

simulated in Cadence Spectre. a. current-voltage and b. time dependent

characteristics of the memristor model.

The I-V characteristic of the memristor modeled in Verilog

AMS and simulated in Cadence Spectre is shown in Fig. 3.

Below the threshold | |, the change in the state of the device

is negligible, which is desirable for reading () since

the memristor acts as a resistance in this region. As the voltage

across the device increases above (), the device state

changes, increasing (decreasing) the conductance. This region

is suitable for writing on the device (). Table 1

shows the values chosen for the memristor model in this work.

TABLE1. MEMRISTOR CHARACTERISTICS IN THIS WORK

On
Resistance

Off
Resistance

Device’s
Length

Dopant
Mobility

Device’s
Threshold

 E-13 m2/Vs

III. NEURAL NETWORK ARCHITECTURE

We present here a neural network architecture in which

memristors’ weights follow the input patterns presented to the

network in an unsupervised fashion. Dense implementation of

the network can be achieved using crossbar arrays integrated

on the CMOS chip [3,4]. Preliminary efforts in integrating

CMOS die with memristors have been performed by us,

demonstrating the feasibility of the approach. The microscopic

image in Fig. 4a shows an example of a CMOS chip designed

in our group before and after the integration of memristors.

A. Crossbar Array

Fig. 4b shows the overall architecture of the neural network in

a crossbar configuration. Blue and green circles represent pre-

and postsynaptic CMOS neurons respectively. The smaller red

circles describe the memristive synapses between the junction

of the pre- and postsynaptic neurons.

Input patterns are fed to the presynaptic neurons, while the

output is read from the postsynaptic neuron. Relative spiking

of the pre- and postsynaptic neurons changes the

corresponding synaptic weight between them. The details of

the architecture for a small network are explained below.

B. Simple Case: 2X2 Network

Fig. 4c represents the block diagram of a self-learning 2X2

network. When the input image is received, using an on-chip

photodiode array, the current output from the photodiode is

given to an integrate and fire block (whose input is pinned

to) and presynaptic neurons start spiking. The height of

• Given a new input, pick

the most active neuron

(“winner takes all”)

one whose weights are

Closest to new input

• Update weight vector for

that neuron

New input

Cluster A

Cluster B

2 310 4

2

3

1

0

4

 ()

doped Un-doped

-6.0E-07

-4.0E-07

-2.0E-07

0.0E+00

2.0E-07

4.0E-07

6.0E-07

8.0E-07

-2 -1 0 1 2

M
em

ri
st

o
r

C
u

rr
e

n
t

(A
)

Applied Voltage (V)

-6.0E-07

-4.0E-07

-2.0E-07

0.0E+00

2.0E-07

4.0E-07

6.0E-07

8.0E-07

1.0E-06

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5

C
u

rr
e

n
t

(A
)

V
o

lt
ag

e
 (

V
)

Time(s)

V I

a) b)

Fig. 4. Overall architecture of the neural network used in this work. CMOS neurons are connected via the memristive synapses in a crossbar

configuration. a) Preliminary efforts in integrating memristors with a CMOS die. On the left is the CMOS chip before the integration and the image on

the right shows single devices along with crossbars fabricated on top of the same CMOS chip. The scale bars are 50 µm. b) Pre- and postsynaptic neuron

in a crossbar array. Relative timing of the pre- and postsynaptic spikes decides the connection strength between them. c) The architecture of a self-

learning 2X2 network proposed in this work.

the spike is level shifted to when low, and to

when high, so that in normal operation the voltage across the

memristors is and therefore, the state of the memristor does

not change (Fig 3). In contrast, the spiking behavior of the

postsynaptic neurons depends on the initial condition of the

memristors. The responses of the postsynaptic neurons are

compared using an integrate-winner-take-all circuit (section

IV) and the winner decides which weights should be changed.

The STDP CTRL block gets inputs from pre- and postsynaptic

neurons and generates an UP signal if the post and the pre are

spiking simultaneously (LTP). If postsynaptic neuron is firing

while presynaptic is not, the CTRL block creates a DOWN

(DN) signal (LTD).

The Charge Pump (CP) receives the UP and DN signals from

the CTRL block and charges or discharges the left (positive)

side of the memristor to beyond and

respectively. This will result in voltages higher than
appearing across the device. Hence, the memristor’s state

(stored as weights) increases or decreases accordingly. The

details of the circuits are discussed in section IV.

IV. VLSI LEARNING CIRCUIT

The circuits are designed to locally change the weights in an

adaptive fashion using a feedback loop. The details of each

block are explained below.

A. Integrate and Fire Model for Neurons

Fig. 5 shows the conventional integrate and fire neuron model.

In this model, the input current gets integrated by a capacitor

and when the integrated charge results in a voltage greater

Fig. 5. Integrate and fire model of the neuron. Current gets integrated

into the capacitor C. The comparator is triggered when the integrated

charge in the capacitor results in a voltage greater than . The

capacitor is reset after a delay.

than , a spike with a pulse width of is generated.

B. STDP Control Block

This block gets inputs from the pre- and postsynaptic neurons

and decides if the corresponding weight between them should

increase or decrease. The module is designed to mimic the

way the synapse’s strength changes in the brain, namely

imitating LTP and LTD.

a. STDP UP Control

In order to ensure that the simultaneous firing of the pre- and
postsynaptic neurons is captured, the presynaptic spike is first

latched for a period of 1 and then ANDed with the post-
synaptic spike (Fig 6). The latch will reset after a delay
using a pulse generator and waits for the next Pre spike.

1
 ≥ . is the maximum period of the post spikes.

Postsynaptic

Neurons

Presynaptic

Neurons

Post1

Integrate

WTA

WIN1

WIN2

UP1

DN1

CPA

Pre1

Post1

Pre1

UP1

DN1

WIN1

CTRL

I-F I-F

CPA

Pre2

Post2

Pre2

UP4

DN4

WIN2

CTRL

I-F I-F

UP4

DN4

CPA

Pre2

Post1

UP3

DN3

WIN1

CTRL

CPA

Pre1

Post2

UP2

DN2

WIN2

CTRL

UP3

DN3

Post2

a)

b)

c)

DN2

UP2

C=3 pF

Fig. 6. STDP UP CTRL Block. Every time the Presynaptic neuron (Pre)

spikes, it is latched and ANDed with the Postsynaptic (Post) spikes. If the

corresponding postsynaptic neuron (output neuron) is winning, an UP

signal will be generated.

Fig. 7. STDP DOWN CTRL block. When Post spikes 8 times without any

spike from Pre, a DN signal with a pulse width of gets generated. Ext.

Reset is the chip reset signal.

An UP signal will be produced if the postsynaptic neuron is
also the winning neuron for the current pattern.

b. STDP DOWN Control

A DOWN (DN) signal is generated given that postsynaptic

neuron (Post) is firing while presynaptic neuron (Pre) is not

firing. Fig. 7 shows the circuit diagram of STDP DOWN

block.

As a time-out mechanism, Post spikes are counted through a

3-bit counter. Since spike durations are shorter than the time-

out window, Pre signal is latched. If there is no Pre spike

while the counter output reaches 7 (time-out condition), a DN

signal is generated. The counter is reset every time it reaches

the maximum value and it waits for the next Post spike.

C. Charge Pump

Fig. 8 presents the circuit schematic of the charge pump block.

The positive side of the memristor (Node VCP) is either

controlled by the input coming from the switch M1 or by the

charge pump. In normal operation, when there is no signal

from the CTRL block, M2 and M3 are open and the charge

pump is bypassed. When M1 is closed the spikes from the

presynaptic neuron will pass through the memristor and reach

the postsynaptic neuron without changing the weight.

However, under the condition in which the charge pump

receives the UP or DN pulses from the STDP control block,

switch M1 will open and the charge pump will take over the

node VCP and charges or discharges it accordingly (Fig. 9).

It is desirable to pre-charge the charge pump capacitor to a

value just below the memristor’s threshold to eliminate dead-

time. However, since the pre-charge voltage is different for

increasing or decreasing the memristor state, the charge pump

is split into UP and DOWN halves. For example, the charge

pump capacitors are pre-charged to so that when

Fig. 8. Charge pump used to change the state of the memristor. CCP1 is

pre-charged to 3.5V which is just at the edge of changing the device's

state. Similarly CCP2 is pre-charged to 1.5V. The delays for disconnecting

the charge pump capacitor from the sources are set so as to reduce the
capacitor drooping as a result of loading.

Fig. 9. a) Upon the arrival of the UP signal node VCP starts charging and

when it hits the device’s threshold, the memristor’s weight increases. b)

DN signal causes node VCP to discharge and the device’s state decreases.

the control pulses are received, the memristor’s weight starts

changing immediately. In this design, and
 , thus and are pre-charged to 3.5 V and 1.5 V

respectively. The voltage on the capacitors can drop due to

timing overlap between the closing of M2(M3) and the opening

of M1. To prevent this, the signals to M2(M3) and ()

are delayed via an inverter chain and a NOR gate configured

as an inverter (used for matching purposes). M2a, M3a, M3b,

Msua and Msda are half-sized transistors in order to reduce the

switching noise when M2 , M3, Msu and Msd turn on and off.

D. Integrate Winner-Take-All

The winning output neuron decides which connections are to

be increased. Therefore, a circuit determining which output

neuron is the winner is needed.

SR

Pre
S

R

Q
Post

WIN
UP

Pulse

Gen

D

Reset

Async

Counter

Q0

Q1

Q2

SR

Latch

S

R

Q

Ext.

Reset

Post

Pre

DN

DN

UP

UP
DN

2.5V

3.5V

VCP

3.5V

DN

gnd

1.5V

UP

I-F

CPA

gnd

580 590 600 610 620
0.68

0.70

0.72

0.74

2.5

3.0

3.5

4.0

0.0

2.0

4.0

 W

time / s

V
C

P
 /
 V

U
P

 /
 V

600 610 620 630 640 650

0.00

0.05

0.10

1.0

1.5

2.0

2.5

0.0

2.0

4.0

 W

time / s

V
C

P
 /
 V

D
N

 /
 V

a) b)

Fig. 10. Integrator WTA. The spikes are integrated and fed to a WTA

circuit. With the arrival of each new pattern, the WTA gets reset and

waits for the new spikes.

Since we are dealing with spikes, the most intuitive way

would be to count and compare them. However, as the number

of the output neurons increases, the hardware-complexity will

proportionally increase. An elegant alternative would be to use

analog design; i.e. integrate the spikes, and use a winner-take-

all (WTA) circuit to decide the winner. Fig. 10 shows the

details of the circuit combining the classical WTA and a

conventional integrator.

V. RESULTS

A. 2X2 Network

In a simple 2X2 network, the goal is to classify between the 2-

pixel images from Fig. 11b,c.

To feed the input patterns to the network, P1 and P2 from Fig.

11a are given as inputs to and respectively. Let us

assume that image from Fig. 11b gets randomly (initial

condition) assigned to output neuron . This should result in

strengthening the connection between and because of

the simultaneous spiking of and (is spiking since the

black pixel is given to its input). However, in this case, image

b should not trigger output neuron , thus the weight

between and should decrease.

Fig. 11. 2X2 network. a) pixel P1 is fed to UA and P2 is fed to UB. b and c)

Images to be classified. d and e) Desirable weights depending on the

pattern which gets assigned to different output neurons

Fig. 12. 2X2 network classification results. a) 2X2 neural network and

corresponding weights between neurons b) Weight evolution. Weights

converge to the expected values from Fig. 11e. c) Input and output

neuron’s spikes. Patterns 𝛼 and 𝛽 are assigned to neurons and

respectively. The winning neuron for the given input pattern fires the

most. d) The outputs of the WTA. WIN and WIN are high (5V) for

input pattern 𝛽 and 𝛼, correspondingly.

A similar reasoning can also be applied to image in Fig. 11c.

Therefore, the weights should converge to Fig. 11d or 11e

depending on which input image gets assigned to which output

neuron.

As seen from Fig. 12 the results of the classification

corresponds to the expected behavior from Fig. 11e. In Fig.

12b the evolution of weights are shown. W1 and W4 are

strengthened and W2 and W3 are weakened. W1 and W4 are

dithering around 0.95, because even in the converged state UP

and DOWN signals are constantly being generated to prevent

the network from being stuck in a local minima. Fig. 12c,d

show the assignment of patterns 𝛼 and 𝛽 to neurons and

respectively.

B. 4X2 Network

A 4X2 network in Fig. 13 classifies the patterns shown in Fig.

13a and 13b. These two patterns enable the classification of

lines with different angles, which is the building block for

recognizing more complicated patterns.

The weights are expected to converge to Fig. 13c or 13d based

on the pattern that gets assigned to different outputs. For

example, if pattern in Fig. 13a is assigned to the weight

vector of the output neuron converges to [weak, strong,

strong, weak]. The results of the classification in the 4X2

network are shown in Fig. 14. Patterns 𝛼 and 𝛽 are assigned to

output neurons and respectively and thus the weights

converge accordingly.

WIN2WIN1

0
1

0
1

New Pattern

0
1

0
1

I-FI-F

New Pattern

C1 C2

Bias

+

_

_

+

+

+

_

_

c)

d)

+

_ +

_
a) b)

e)

W1

W2

W3

W4

_

_
+

+

a) b)

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Time(s)

W1

W2

W3

W4

WIN

WIN

c)

d)

 is assigned
to pattern

 is assigned
to pattern

Fig. 13. 4X2 neural network. a and b) patterns to be classified are 2 lines

with different angles. c and d) The expected weights to be converged in

the neural network in order to classify patterns a and b.

Fig. 14. 4X2 network classification. a) A 4X2 neural network and

corresponding weights between neurons. b) Classification between

patterns 𝛼 and 𝛽. and fire the most with patterns 𝛽 and 𝛼

respectively. c) Weight evolution and convergence to the expected values

from fig 13.c.

VI. CONCLUSION

We have proposed a hardware efficient architecture for

classifying patterns in an unsupervised neural network.

Spiking neuromorphic circuits are combined with adaptive

nano-devices as synapses to design a compact platform for

clustering applications. Our implementation utilizes the analog

nature of the memristive synapse without resorting to D/A-

A/D conversion resulting in an energy efficient

implementation. Work is ongoing in our lab to realize an

integrated CMOS-memristor chip for fast pattern

classification.

ACKNOWLEDGMENT

This work is funded by the Air Force Office of Scientific

Research (AFOSR) under the MURI grant FA9550-12-1-

0038.

REFERENCES

[1] D.B. Strukov, G.S. Snider, D.R.Stwart, and R.S.Williams, “Missing

memristor found,” Nature, vol. 453, pp. 80-83, May 2008

[2] K.K. Likharev,” Crossnets: Neuromorphic Hybrid
CMOS/Nanoelectronic Networks,” Science of Advanced Materials, vol.
453, pp. 80-83, 2008

[3] D.B. Strukov, K.K. Likharev, “CMOL FPGA: a reconfigurable
architecture for hybrid digital circuits with two-terminal
nanodevices,”Nanotechnology, Vol 16, pp. 888-900, March 2005

[4] G.S. Snider, “Spike-Timing-Dependent Learning in Memristive
Nanodevices”, Prof. of IEEE International Symposium on Nanoscale
Architectures 2008 (NANOARCH), pp. 85-92, 2008

[5] G.S. Snider, “Self-organized computation with unreliable memristive
nanodevices,” Nanotechnol., vol. 18, no. 36, 2007.

[6] G.S. Rose, R.Pino, Q. Wu, “A Low-Power Memristive Neuromorphic
Circuit Utilizing a Global/Local Training Mechanism”, Proc. of
International Joint Conference on Neural Networks 2011, August 2011

[7] K.D. Cantley, A.Subramaniam, H.J.Stiegler, R.A.Chapman, E.M.Vogel,
“Hebbian Learning in Spiking Neural Networks With Nanocrystaline
Silicon TFTs and Memristive Synapses”, IEEE Transactions on
Nanotechnology ,Vol. 10, No. 5, September 2011.

[8] I.E.Ebong, P. Mazumder, “CMOS and memristor based neural network
design for position detection”, Proc. of IEEE, Vol. 100. pp. 2050-2060,
Jun. 2012

[9] Jose M Cruz-Albrecht, Timothy Derosier and Narayan Srinivasa, “A
scalable neural chip with synaptic electronics using CMOS integrated
memristors”, Nanotechnology 24, September 2013

[10] J.A. Pérez-Carrasco, C.Zamarreno-Ramos, T.Serrano-Gotarredona,
B.Linares-Barranco,“On neuromorphic spiking architectures for
asynchronous STDP memristive systems,” Proc. Of 2010 IEEE Int.
Symp. Circuits Systems (ISCAS), pp. 1659-1662, 2010.

[11] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis4, G. Indiveri
and B. Linares-Barranco,” STDP and STDP variations with memristors
for spiking neuromorphic learning systems”, Frontiers in
neuroscince,Vol. 7, February 2013

[12] R. P. N. Rao, A. Fairhall (2013, Apr), Computational Neuroscience,
[Lecture 7.2], Available: https://class.coursera.org/compneuro-001

[13] P.Dyan, L.Abbot, “Theoretical neuroscience: Computational and
Mathematical Modeling of Neural Systems“, MIT Press, 2005.

[14] Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya,
Pinaki Mazumder, and Wei Lu, “Nanoscale Memristor Device as
Synapse in Neuromorphic Systems”, Nano Letters, Vol 10, pp. 1297-
1301, 2010

[15] S. Kvatinsky, E.G.Friedman, “ Models of Memristors for SPICE
Simulations “, 2012 IEEE 27th Convention of Electrical and Electronics
Engineers in Israel, 2012

[16]] Y.Dan, M.Poo, “Spike Timing Dependent Plasticity: From Synapse to
Perception”, American Psychological Society, 2006

[17] W.Gerstner, W.Kistler,Spiking Neuron Models, Single neurons,
Populatons, Plasticity, 3rd ed. Cambridge University Press, 2006

c)

+

_
_

+
_

+
+

_

_ +

+ _
+ _

_ +

d)

_

+

+
_

+
_

_
+

a) b)

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 0.002 0.004 0.006 0.008 0.01

Time(s)

W11

W21

W31

W41

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 0.002 0.004 0.006 0.008 0.01

Time(s)

W12

W22

W32

W42

 is
assigned to
pattern

 is
assigned to
pattern α

+

_

_

+

+

+

_

_

a)

b)

c)

