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Abstract— Memristors have proven to be powerful 

analogs of neural synapses. While there have been some 

efforts to exploit this feature, the intrinsic analog nature of 

the memristive element has not been fully utilized. This 

paper presents a hardware-efficient neuromorphic CMOS-

memristor pattern classifier. The system takes advantage 

of the memristor as a true analog memory, and Spike 

Timing Dependent Plasticity (STDP) is utilized to program 

memristors in a recurrent neural network. System co-

simulations are performed in Verilog-AMS with CMOS 

devices and previously published memristive models. The 

results indicate the power of this approach in pattern 

classification using unsupervised learning. 

Keywords— Neural networks; Unsupervised learning; 

Adaptive learning; VLSI learning circuits; Spike Timing 

Dependent Plasticity (STDP); Memristors  

I.  INTRODUCTION  

Realizing a computational framework rivaling the scale and 

complexity of biological neural networks is extremely 

challenging. This stems from the enormous connectivity in the 

brain utilized for massive parallel processing, which is further 

exacerbated with the need for a nonvolatile memory or 

synthetic synapse. Advances in nonvolatile storage such as 

Flash memories, though exciting, are extremely hard to co-

integrate in a dense fashion with CMOS. Recently, memristors 

have emerged as a dense nonvolatile memory [1], capable of 

being directly integrated with CMOS in a hybrid fashion [2,3]. 

Lately, several attempts have been made to synthesize 

neuromorphic computational platforms utilizing memristors 

and CMOS circuits [5]-[11]. However, they either need 

synchronization which is not a biologically plausible 

mechanism [4,5], require a global and/or local teacher [6], are 

computationally expensive [4-6, 9] or depend on absolute 

spike shape leading to variable learning rates  [10-11]. 

Moreover, most of these examples primarily utilize the digital 

design framework, which does not exploit the memristor’s 

potential as a true analog memory with a continuum of 

programming levels. Furthermore, none of these examples 

have used memristors in neural networks for pattern 

recognition or clustering applications.  

We present here a hardware-efficient neuromorphic platform 

utilizing principles borrowed from computational 

neuroscience and biology. The principal idea is the efficient 

implementation of spike-based learning algorithm utilizing a 

biomimetic circuit approach. Using this principle we have 

realized simple pattern recognition architectures.  

The paper is organized as follows: In section II, we present a 

brief background on the learning algorithm and the memristor 

model used in this work. Section III describes the proposed 

architecture for the spike-based unsupervised neural network. 

Details of the circuit-level implementation are discussed in 

section IV with the simulation results provided in section V. 

Finally, concluding remarks about the potential of such a 

platform is provided in section VI. 

II. BACKGROUND 

A. Unsupervised Learning 

In unsupervised neural networks the clustering or 

classification takes place based on the input patterns given to 

the network. As shown in Fig. 1, each output neuron 

represents a cluster. Therefore, the weight vector   (  ) is 

the center of cluster A(B).  When a new input is presented to 

the network, an output neuron (or compute node) emerges as a 

winner due to the random initial state of the weights in the 

network. The most active output neuron will be the one whose 

weight vector is the closest to the input vector, ui. The learning 

algorithm minimizes the distance between the winning 

neuron’s weight vector and the input pattern. Over the course 

of many patterns, features get mapped into the weight vectors. 

In other words weights are the running average of the input 

patterns: 
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Where   is the learning rate [12]. 



 
Fig. 1. Competitive Learning- Each output neuron represents a cluster. 

   and    represent cluster A and B respectively and    and    are 

the centers of the clusters. Upon the arrival of every input pattern, the 

winner neuron’s weights adjust in a way to get closer to the input pattern. 

u1 and u2 are the firing rates of input neurons U1 and U2. Adapted from 

[12].  

B. Spike Timing Dependent Pasticity  

Spike Timing Dependent Plasticity (STDP) is a biological 

learning mechanism found to exist in the brain [Bi and Poo, 

2001]. The synaptic strength changes as a result of relative 

timing of spikes between the pre- and postsynaptic neurons. 

The weights undergo Long Term Potentiation (LTP) and 

strengthen if the pre- and postsynaptic neurons both depolarize 

and fire simultaneously. Conversely, the connection between 

neurons weaken when there is uncorrelated firing between the 

postsynaptic and presynaptic neuron, termed Long Term 

Depression (LTD).  

Previous works have demonstrated memristors as a good 

candidate for mimicking this learning mechanism (STDP) in 

the brain. [14] 

Our approach utilizes the mathematical modeling of STDP 

from computational neuroscience coupled with the structural 

biological framework of integrate and fire neurons and 

memristive synapses to design an adaptive neural network. 

C. Memristor Model  

The memristor model used in this work is based on the Linear 

Ion Drift (LID) model proposed by Strukov et al. [1]. 

Simulation modeling of memristive behavior was performed 

using Verilog-AMS code modified from the simulation model 

(LID option) presented by Kvatinsky et al. [15].  

This model assumes two resistors in series:     and     .     

and      represent the doped and un-doped regions of the 

active area of the device. Fig. 2 shows the simplified 

memristor model and the inset represents the memristor’s 

symbol. The state variable w is bounded between 0 and D (the 

length of the active region) and moves between the doped and 

un-doped region under the application of the electric field and 

changes the resistance of the device.  

The so-called memristance of the device follows equation 2: 
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Fig. 2. Linear Ion Drift model of the memristors proposed in [1]. 

 

 
Fig. 3. Memristor I-V characteristics modeled in Verilog AMS and 

simulated in Cadence Spectre. a. current-voltage and b. time dependent 

characteristics of the memristor model. 

The I-V characteristic of the memristor modeled in Verilog 

AMS and simulated in Cadence Spectre is shown in Fig. 3.  

Below the threshold |   |, the change in the state of the device 

is negligible, which is desirable for reading (        ) since 

the memristor acts as a resistance in this region. As the voltage 

across the device increases above    (    ), the device state 

changes, increasing (decreasing) the conductance. This region 

is suitable for writing on the device (         ). Table 1 

shows the values chosen for the memristor model in this work. 

TABLE1. MEMRISTOR CHARACTERISTICS IN THIS WORK 

                  

On 
Resistance 

Off 
Resistance 

Device’s 
Length 

Dopant 
Mobility 

Device’s 
Threshold 

                    E-13 m2/Vs         

III. NEURAL NETWORK ARCHITECTURE 

We present here a neural network architecture in which 

memristors’ weights follow the input patterns presented to the 

network in an unsupervised fashion. Dense implementation of 

the network can be achieved using crossbar arrays integrated 

on the CMOS chip [3,4]. Preliminary efforts in integrating 

CMOS die with memristors have been performed by us, 

demonstrating the feasibility of the approach. The microscopic 

image in Fig. 4a shows an example of a CMOS chip designed 

in our group before and after the integration of memristors.  

A. Crossbar Array 

Fig. 4b shows the overall architecture of the neural network in 

a crossbar configuration. Blue and green circles represent pre- 

and postsynaptic CMOS neurons respectively. The smaller red 

circles describe the memristive synapses between the junction 

of the pre- and postsynaptic neurons.  

Input patterns are fed to the presynaptic neurons, while the 

output is read from the postsynaptic neuron. Relative spiking 

of the pre- and postsynaptic neurons changes the 

corresponding synaptic weight between them. The details of 

the architecture for a small network are explained below. 

B. Simple Case: 2X2 Network 

Fig. 4c represents the block diagram of a self-learning 2X2 

network.  When the input image is received, using an on-chip 

photodiode array, the current output from the photodiode is 

given to an integrate and fire block (whose input is pinned 

to    ) and presynaptic neurons start spiking. The height of  
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Fig. 4. Overall architecture of the neural network used in this work.  CMOS neurons are connected via the memristive synapses in a crossbar 

configuration. a) Preliminary efforts in integrating memristors with a CMOS die. On the left is the CMOS chip before the integration and the image on 

the right shows single devices along with crossbars fabricated on top of the same CMOS chip. The scale bars are 50 µm. b)  Pre- and postsynaptic neuron 

in a crossbar array. Relative timing of the pre- and postsynaptic spikes decides the connection strength between them. c) The architecture of a self-

learning 2X2 network proposed in this work. 

the spike is level shifted to     when low, and to        

when high, so that in normal operation the voltage across the 

memristors is    and therefore, the state of the memristor does 

not change (Fig 3). In contrast, the spiking behavior of the 

postsynaptic neurons depends on the initial condition of the 

memristors. The responses of the postsynaptic neurons are 

compared using an integrate-winner-take-all circuit (section 

IV) and the winner decides which weights should be changed.  

The STDP CTRL block gets inputs from pre- and postsynaptic 

neurons and generates an UP signal if the post and the pre are 

spiking simultaneously (LTP). If postsynaptic neuron is firing 

while presynaptic is not, the CTRL block creates a DOWN 

(DN) signal (LTD). 

The Charge Pump (CP) receives the UP and DN signals from 

the CTRL block and charges or discharges the left (positive) 

side of the memristor to beyond         and         

respectively. This will result in voltages higher than       
appearing across the device.  Hence, the memristor’s state 

(stored as weights) increases or decreases accordingly. The 

details of the circuits are discussed in section IV. 

IV. VLSI LEARNING CIRCUIT 

The circuits are designed to locally change the weights in an 

adaptive fashion using a feedback loop. The details of each 

block are explained below. 

A. Integrate and Fire Model for Neurons 

Fig. 5 shows the conventional integrate and fire neuron model.  

In this model, the input current gets integrated by a capacitor 

and when the integrated charge results in a voltage greater 

 
Fig. 5. Integrate and fire model of the neuron. Current gets integrated 

into the capacitor C. The comparator is triggered when the integrated 

charge in the capacitor results in a voltage greater than         . The 

capacitor is reset after a     delay. 

than         , a spike with a pulse width of     is generated. 

B. STDP Control Block 

This block gets inputs from the pre- and postsynaptic neurons 

and decides if the corresponding weight between them should 

increase or decrease.  The module is designed to mimic the  

way the synapse’s strength changes in the brain, namely 

imitating LTP and LTD.  

a. STDP UP Control  

In order to ensure that the simultaneous firing of the pre- and 
postsynaptic neurons is captured, the presynaptic spike is first 

latched for a period of    1 and then ANDed with the post-
synaptic spike (Fig 6). The latch will reset after a     delay 
using a pulse generator and waits for the next Pre spike. 

                                                           
1
     ≥          .           is the maximum period of the post spikes. 
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Fig. 6. STDP UP CTRL Block. Every time the Presynaptic neuron (Pre) 

spikes, it is latched and ANDed with the Postsynaptic (Post) spikes. If the 

corresponding postsynaptic neuron (output neuron) is winning, an UP 

signal will be generated.  

 
Fig. 7. STDP DOWN CTRL block. When Post spikes 8 times without any 

spike from Pre, a DN signal with a pulse width of     gets generated. Ext. 

Reset is the chip reset signal. 

An UP signal will be produced if the postsynaptic neuron is 
also the winning neuron for the current pattern. 
 

b. STDP DOWN Control  

A DOWN (DN) signal is generated given that postsynaptic 

neuron (Post) is firing while presynaptic neuron (Pre) is not 

firing.  Fig. 7 shows the circuit diagram of STDP DOWN 

block.  

As a time-out mechanism, Post spikes are counted through a 

3-bit counter. Since spike durations are shorter than the time-

out window, Pre signal is latched. If there is no Pre spike 

while the counter output reaches 7 (time-out condition), a DN 

signal is generated. The counter is reset every time it reaches 

the maximum value and it waits for the next Post spike.  

C. Charge Pump 

Fig. 8 presents the circuit schematic of the charge pump block. 

The positive side of the memristor (Node VCP) is either 

controlled by the input coming from the switch M1 or by the 

charge pump. In normal operation, when there is no signal 

from the CTRL block, M2 and M3 are open and the charge 

pump is bypassed. When M1 is closed the spikes from the 

presynaptic neuron will pass through the memristor and reach 

the postsynaptic neuron without changing the weight.  

However, under the condition in which the charge pump 

receives the UP or DN pulses from the STDP control block, 

switch M1 will open and the charge pump will take over the 

node VCP and charges or discharges it accordingly (Fig. 9).  

It is desirable to pre-charge the charge pump capacitor to a 

value just below the memristor’s threshold to eliminate dead-

time. However, since the pre-charge voltage is different for 

increasing or decreasing the memristor state, the charge pump 

is split into UP and DOWN halves. For example, the charge 

pump capacitors are pre-charged to          so that when  

 
Fig. 8. Charge pump used to change the state of the memristor. CCP1 is 

pre-charged to 3.5V which is just at the edge of changing the device's 

state. Similarly CCP2 is pre-charged to 1.5V. The delays for disconnecting 

the charge pump capacitor from the sources are set so as to reduce the 
capacitor drooping as a result of loading. 

 

 

  

Fig. 9. a) Upon the arrival of the UP signal node VCP starts charging and 

when it hits the device’s threshold, the memristor’s weight increases. b) 

DN signal causes node VCP to discharge and the device’s state decreases. 

the control pulses are received, the memristor’s weight starts 

changing immediately. In this design,         and     
     , thus      and      are pre-charged to 3.5 V and 1.5 V 

respectively. The voltage on the capacitors can drop due to 

timing overlap between the closing of M2(M3) and the opening 

of M1. To prevent this, the signals to M2(M3) and    (   ) 

are delayed via an inverter chain and a NOR gate configured 

as an inverter (used for matching purposes). M2a, M3a, M3b, 

Msua and Msda are half-sized transistors in order to reduce the 

switching noise when M2 , M3, Msu and Msd turn on and off. 

D. Integrate Winner-Take-All 

The winning output neuron decides which connections are to 

be increased. Therefore, a circuit determining which output 

neuron is the winner is needed. 
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Fig. 10. Integrator WTA. The spikes are integrated and fed to a WTA 

circuit. With the arrival of each new pattern, the WTA gets reset and 

waits for the new spikes. 

Since we are dealing with spikes, the most intuitive way 

would be to count and compare them. However, as the number 

of the output neurons increases, the hardware-complexity will 

proportionally increase. An elegant alternative would be to use  

analog design; i.e. integrate the spikes, and use a winner-take-

all (WTA) circuit to decide the winner. Fig. 10 shows the 

details of the circuit combining the classical WTA and a 

conventional integrator.  

V. RESULTS 

A. 2X2 Network 

In a simple 2X2 network, the goal is to classify between the 2-

pixel images from Fig. 11b,c.  

To feed the input patterns to the network, P1 and P2 from Fig. 

11a are given as inputs to    and    respectively. Let us 

assume that image from Fig. 11b gets randomly (initial 

condition) assigned to output neuron   . This should result in 

strengthening the connection between    and    because of 

the simultaneous spiking of    and    (   is spiking since the 

black pixel is given to its input). However, in this case, image 

b should not trigger output neuron    , thus the weight 

between    and    should decrease.  

 

Fig. 11. 2X2 network. a) pixel P1 is fed to UA and P2 is fed to UB. b and c) 

Images to be classified. d and e) Desirable weights depending on the 

pattern which gets assigned to different output neurons 

 

Fig. 12. 2X2 network classification results. a)  2X2 neural network and 

corresponding weights between neurons b) Weight evolution. Weights 

converge to the expected values from Fig. 11e. c) Input and output 

neuron’s spikes. Patterns 𝛼 and 𝛽 are assigned to neurons    and    

respectively. The winning neuron for the given input pattern fires the 

most. d) The outputs of the WTA.    WIN and    WIN are high (5V) for 

input pattern 𝛽 and 𝛼, correspondingly. 

A similar reasoning can also be applied to image in Fig. 11c. 

Therefore, the weights should converge to Fig. 11d or 11e 

depending on which input image gets assigned to which output 

neuron. 

As seen from Fig. 12 the results of the classification 

corresponds to the expected behavior from Fig. 11e. In Fig. 

12b the evolution of weights are shown. W1 and W4 are 

strengthened and W2 and W3 are weakened. W1 and W4 are 

dithering around 0.95, because even in the converged state UP 

and DOWN signals are constantly being generated to prevent 

the network from being stuck in a local minima. Fig. 12c,d 

show the assignment of patterns 𝛼 and 𝛽 to neurons    and    

respectively.  

B. 4X2 Network 

A 4X2 network in Fig. 13 classifies the patterns shown in Fig. 

13a and 13b. These two patterns enable the classification of 

lines with different angles, which is the building block for 

recognizing more complicated patterns.  

The weights are expected to converge to Fig. 13c or 13d based 

on the pattern that gets assigned to different outputs. For 

example, if pattern in Fig. 13a is assigned to    the weight 

vector of the output neuron    converges to [weak, strong, 

strong, weak]. The results of the classification in the 4X2 

network are shown in Fig. 14. Patterns 𝛼 and 𝛽 are assigned to 

output neurons    and    respectively and thus the weights 

converge accordingly. 
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Fig. 13. 4X2 neural network. a and b) patterns to be classified are 2 lines 

with different angles. c and d) The expected weights to be converged in 

the neural network in order to classify patterns a and b.  

 
Fig. 14. 4X2 network classification. a) A 4X2 neural network and 

corresponding weights between neurons. b) Classification between 

patterns 𝛼 and 𝛽.    and    fire the most with patterns 𝛽 and 𝛼 

respectively. c) Weight evolution and convergence to the expected values 

from fig 13.c. 

VI. CONCLUSION 

We have proposed a hardware efficient architecture for 

classifying patterns in an unsupervised neural network. 

Spiking neuromorphic circuits are combined with adaptive 

nano-devices as synapses to design a compact platform for 

clustering applications. Our implementation utilizes the analog 

nature of the memristive synapse without resorting to D/A-

A/D conversion resulting in an energy efficient 

implementation. Work is ongoing in our lab to realize an 

integrated CMOS-memristor chip for fast pattern 

classification. 
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