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A Scalable Low Voltage Analog Gaussian
Radial Basis Circuit

Luke Theogarajan and L. A. Akers

Abstract—Gaussian basis function (GBF) networks are powerful sys-
tems for learning and approximating complex input-output mappings.
Networks composed of these localized receptive field units trained with
efficient learning algorithms have been simulated solving a variety of
interesting problems. For real-time and portable applications however,
direct hardware implementation is needed. We describe experimental
results from the most compact, low voltage analog Gaussian basis circuit
yet reported. We also extend our circuit to handle large fan-in with
minimal additional hardware. Our design is hierarchical and the number
of transistors scales almost linearly with the input dimension making it
amenable to VLSI implementation.

Index Terms—Analog VLSI, Gaussian basis function, neural networks.

I. INTRODUCTION

Neurons with response characteristics that are locally tuned to a
particular range of the input variable have been found in many parts
of the central nervous system [1]. Examples include cells in the
somatosensory cortex that respond selectively to stimulation from
localized regions of the body surface, and orientation selective cells in
the visual cortex that respond selectively to stimulation which are both
local in retinal position and local in angle of object orientation [2].
Populations of these locally-tuned cells have been found organized in
cortical maps where the input variable varies in an approximate linear
fashion with position in the map [1]. These maps are also observed to
have overlapping receptive fields. Overlapping receptive fields offer
the capability for improving signal to noise ratios and for providing
fault tolerance.

Computer simulations of GBF networks are sufficient for many
applications. However, hardware implementation of these systems are
mandatory for many real-time, or low power, portable applications
such as vision and speech recognition, robotics, and numerous other
interactive control and signal processing applications. Hierarchical
networks of GBF’s are used as elementary feature detectors, then
these features are combined in multiple ways to build complex
feature detectors. In the past few years there have been a number
hardware implementations of the Gaussian basis function in analog
[3]–[6], and pulse forms [7]. The speed advantage of the hardware
approach will continue to expand as the systems are scaled to the
number of processing elements found in biological systems. For these
reasons, we have developed a compact, low voltage, analog circuit
implementation of the GBF network.

II. THE MULTIDIMENSIONAL GAUSSIAN BASIS CIRCUIT

The Gaussian function implementation in most of the circuits
referenced above are direct mathematical implementations. However,
most neural models are often simplified for analytical tractability,
and are not intended to be an accurate representation of its biological
counterpart. Therefore we believe that rather than designing a circuit
to give an exact Gaussian, a circuit that has the essential properties
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Fig. 1. Gaussian basis circuit.

of the Gaussian will suffice. This is a peak at the desired center and
a nonlinear continuous drop on either side as the input moves away
from the center. Therefore, we designed a circuit which has a general
Gaussian or “Bump” shape.

When two transistors are connected in series, there occurs a
self correlation of currents, and if the currents have a differential
or complementary nature a bump output results [3]. One way of
implementing this differential or complementary nature is to use a
differential amplifier. An alternate method is to use a device which
has a complementary characteristic to the same input voltage. PMOS
and NMOS devices have such complementary characteristics. By
using this inherently complementary nature we have been able to
design a circuit which approximates a Gaussian surface. The circuit
is shown in Fig. 1. The input to the circuit isVin � Vc; whereVc
is the center. We can to store this center using the floating gate
transistor synapse as presented in [8]. In order to use the exponential
relationship between the input voltage and output current, we operate
our circuit mostly in the subthreshold region of operation. One way
to achieve this is to lower the supply voltage such that both devices
operate in the subthreshold region. However, this results in a very
small current for all the input voltage swing. We have developed a
method for the circuit to be in the subthreshold voltage region of
operation for the tails of the output current, and be in the saturated
above threshold voltage region for the peak of the output current.
This gives an excellent peak-to-valley ratio, and good current drive.
We do this with a nonlinear resistor, in our case by a drain connected
PMOS transistor. The PMOS load also facilitates the mirroring of the
current to the output transistor. The load transistor drops the voltage
to the source of the correlating PMOS transistor as a function of the
current through the circuit. Thus the voltage seen by the source of the
PMOS transistor when it dominates is lower than the supply and after
a few tenths of volts forces the circuit into the subthreshold region
of operation. The advantage in using this method is that the dynamic
bias variation to the source of the PMOS transistor allows the circuit
to operate to a large extent in the subthreshold regime but helps to
keep the supply voltage relatively high. The point where the built-in
center occurs is not atVdd=2 as in the case of a the current through a
simple inverter, but at a smaller voltage slightly above threshold. This
above threshold operation at the peak is beneficial, since the peak of
a Gaussian resembles a quadratic and increases the current drive.

The supply voltage has an effect on the symmetry of the Gaussian
shape of the output. This occurs due to the antisymmetrical loading
on the PMOS side which leads to an extended range of operation for
the PMOS transistor as the supply is increased. In order for the circuit
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Fig. 2. The multidimensional Gaussian circuit. The circuit is shown for 4 inputs. The same principle can be used to extend this ton inputs.

Fig. 3. The measured output curves of the circuit for equal PMOS and
NMOS transistor sizing of 20/2, 3/2 for the largest to the smallest current
peaks. The input to the circuit was withVc equal to zero.

to operate approximately symmetric and for low power dissipation,
the supply is fixed at 3 V. Decreasing the supply below 3 V will force
the entire circuit in subthreshold operation just lowering the current
levels and circuit speed. However, operating the circuit above 3 V
will increase the anti-symmetry. These effects are shown later with
experimental data.

An advantage of the design is the circuit operates both in subthresh-
old and above threshold. Thus the physics of the device gives us an
exponential and at the peak we obtain moderately high current levels
and noise immunity. Most circuits are operated in the subthreshold
region by subthreshold current sourcing. Our circuit is not limited
by an external current source and has a dynamic subthreshold region
of operation.

The extension of our circuit to the multidimensional case relies
on the property of multiplication of Gaussians gives a Gaussian.
By multidimensional we mean having multiinputs with one overall
output. This circuit is shown in Fig. 2. When two transistors are
connected in series the output current is a correlation of the inputs.
Correlation can also be thought of as a normalized multiplication (for
two inputs). If more than two transistors are connected in series then

Fig. 4. Comparison of the measured circuit output(curve with longer tail) to
a best fitting Gaussian.

the output current is given by

1

Iout
=

n

k=1

1

Ik
(1)

wheren is the number of inputs.

III. EXPERIMENTAL RESULTS

The chips were fabricated in the MOSIS 2-�m Nwell process. One
chip had many one input Gaussian circuits with various transistor
sizing, and another chip had 12 input circuits. The output was
recorded using the Lab View data acquisition software. Since we
did not provide any weighted current mirrors in the chip to give
a high current output and Lab View requires a voltage input, we
used a npn transistor configured in the emitter follower mode to give
the required output voltage to be measured. The input to chip was
a sawtooth from 0–3 V. We made all measurements withVc equal
to 0 V. The results from our chip for the one dimensional case for
various sizings is shown in Fig. 3.

For constantW=L ratios of the PMOS to the NMOS, the built-in
center occurs at the same point. While the width of the Gaussian is
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Fig. 5. The measured output of the 12 input multidimensional Gaussian
circuit with all the inputs tied together.

Fig. 6. The measured output of the multidimensional Gaussian circuit. 11
inputs are tied together. The 11 inputs are fed a sawtooth and the twelfth
input is manually stepped using a resistor string.

set by the width to length ratio fixed during layout, the peak of the
current can be varied with the supply voltage.

A comparison of the measured circuit output to a Gaussian is shown
in Fig. 4. The circuit is the curve with the longer tail on the negative
exponential. This is due to anti-symmetrical loading on the PMOS
side and can be adjusted by varying the device sizing. The difference
in area from an ideal Gaussian and our circuit implementation is 11%.

The 12 input multidimensional Gaussian circuit was tested as
follows. First all the twelve inputs were tied together and the output
is shown in Fig. 5. Next, eleven inputs were tied together and the

twelfth input was manually stepped through a voltage range from
0–2 V in steps of 0.1 V using a resistor string. These results are
shown in Fig. 6.

IV. CONCLUSION

Gaussian basis functions are universal approximators. We have
built, fabricated and tested a very compact electronic implementation
of such a function. We have also implemented a multidimensional
extension of our circuit. This type of multidimensional cell may be
used to identify complex features, like lines and bars, as opposed to
simple ones, like points, for the one dimensional case.
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Improved Model Reduction Procedure for 2-D
Separable Denominator Digital Systems

Chengshan Xiao

Abstract—An improved procedure is presented for the model re-
duction of 2-D separable denominator digital systemsH(z1; z2): The
proposed procedure is based on modifying the factorizationH(z1; z2) =
H2(z2)H1(z1) and minimizing an existing frequency error bound devel-
oped by Zhou, Li, and Lee in 1994. In terms of small actual frequency
errors and tight frequency error bounds, this procedure is superior to
the existing model reduction methods.

Index Terms—Model reduction, two-dimensional systems.

I. INTRODUCTION

The balanced model reduction has now become a powerful
technique for the approximation of a system. This model reduction
method was initially studied by Moore [1] and Kung [2] for
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